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Stochastic aspects of one-dimensional discrete dynamical systems: Benford’s law
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Benford’s law owes its discovery to the “Grubby Pages Hypothesis,” a 19th century observation made by
Simon Newcomb that the beginning pages of logarithm books were grubbier than the last few pages, implying
that scientists referenced the values toward the front of the books more frequently. If a data set satisfies
Benford’s law, then it's significant digits will have a logarithmic distribution, which favors smaller significant
digits. In this article we demonstrate two ways of creating discrete one-dimensional dynamical systems that
satisfy Benford’s law. We also develop a numerical simulation methodology that we use to study dynamical
systems when analytical results are not readily available.
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I. INTRODUCTION random variable. Given a random variabfe d;(X) is a
discrete random variable. We denote the probability that
The “Grubby Pages Hypothesi$1] led to the conjecture equalsk as P[X=k]. A random variableX satisfies Ben-
that the significant digits of many data sets describing thdord’s law if fori=1,2,3 .. .,
physical world are not uniformly distributed, but distributed

in a way that favors smaller significant digits and smaller P[d;(X)=k]=log;o(1+ 1/k)
combinations of significant digitée.g., the first significant , , ,
digit will be 4 more frequently than 5 and the first two sig- for k=10"%10"*+1,...,10-1. N

nificant digits will be 89 more often than they will be 91). . _ ) , _
Benford’s law makes this conjecture more precise by provid- USing & random variable to introduce Benford's law is
ing a probability mass function for combinations of signifi- @PPropriate here because random variables and dynamical
cant digits. While the law may seem obscure, many author§ystems can both be easily associated with densities. This
have connected Benford’s law to data sets like stock pricegeﬁnition of Benford'’s law is equivalent to other definitions
[2], tax data[3], and census statistidd]. Since some ac- in the literature(see Ref[8]).

counting data seems to satisfy Benford’s law, it is now being Definition 1 If the entries in a random vector are dis-
used to detect accounting fralid]. Recently an empirical tributed according to the density p, then we denote the prob-
study suggested that some dynamical systems satisfy Beability density function for the random vectfiog,«(|x|)} by
ford’s law [5]. This is important, because if dynamical sys- Ap, where{log,(|x|)} is the fractional part oflog;(|x|).

tems are used to model physical systems, and the physical Theorem 1A random vector, distributed according to
data satisfy Benford's law, then the dynamical system modsome density p, satisfies Benford's law if and onlff=1.

els should too. _ . Proof. See[9], Theorem 1. u
This article focuses on the long run behavior and digital
frequencies of discrete one-dimensional dynamical systems Il INVARIANT DENSITY FUNCTIONS

(see Ref[5] for the continuous cageand how well such

systems satisfy Benford’s law. We use notation and tools \We represent dynamical systems 8 ¢, 7), whereSis
similar to those developed in Ref§] and[7]. We start with  the interval the dynamical system is defined gnis the

a spaceS and a transformation where 7 describes the dy-  jnvariant density, and- is the function that defines the dy-
namics of the system and  S—S. Given an initial vector  namics of the system. Implicit in this representation is that
of points, X,, distributed inS according to some probability s the only invariant probability density associated with
density functionf, the vector of points given by;=17(X))  Every dynamical system mentioned in this article has exactly
has a probability density function that depends on botind  one associated invariant density. In generalr is smooth,

f. Successive iterates are giveny, ;= 7(x,). We develop |ocally invertible, aperiodic, piecewise expanding, and satis-
methods to determine if a dynamical system satisfies Berfies the Markov property, then it has one invariant measure,
ford’s law, we introduce a method to modify dynamical sys-so consequently it has a single invariant den$Ref. [6],
tems such as the logistic map so that they satisfy Benford'sheorem 6.1.1 If one of the proceeding conditions is not
law, and we show how to construct new dynamical systemsatisfied, one can still show the existence of an invariant
that satisfy Benford's law. density function forr by using results from Ref6], Chap. 5.
Also, using Ref[6], Theorem 8.2.1 an upper bound can be
placed on the number of distinct invariant density functions

In order to define Benford's law, we first define the func- for 7. ) _ )
tions d;, which extract the first significant digits from a The Frobenius-Perron operator is defined as

II. BENFORD’S LAW

d
P.f=—+— f(N)dN. 2
* Author to whom correspondence should be addressed. ’ dxffl(—oo,x] ) @
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The_probabillity. density functions generated b;z/ suc- * |n(10)\/10712
cessive applications of are denoted byf, P, f, PZf, ApL:E —X_qél, (6)
P3f,...,P"f, ... whereP"f denotes thenth application k=1 wy1-10

of the Frobenius—Perron operator. This notation reinforces o ] )
the fact that each new probability density function depend$© the logistic map does not satisfy Benford's law either.
on bothr andf.

The dynamical systems mentioned in this paper all have VI. MODIFYING THE LOGISTIC MAP
one invariant density, sd”f will converge to a single
unique invariant probability density function, denoted fyy
which is independent of the initial density

Here we use homeomorphisms to alter the iterates of the
logistic map so that they satisfy Benford’s law.

Definition 3 Let (S,7,p) and (S*,7*,p*) be dynamical
systems. The two dynamical systems are topologically conju-
gate if there exists a homeomorphisms h such that S

Definition 2 A dynamical systeniS,7,p) satisfies Ben- =h(S), 7=h~'er*<h, and
ford’s law if Ap=1.

We propose Definition 2 because the iteratesQyfr(p), d (hix
given by x,.;=17(x,), will converge to the distribution p*(X)= d_xf,oc p(\)d\. (7)
specified byp, which satisfies Benford’s law if and only if
Ap=1.

The reciprocal density is

IV. BENFORD DYNAMICAL SYSTEMS

Topologically conjugation preserves both measure theoretic
and topological properties af. See[6], Sec. 3.6 for a con-

1 cise treatment of the above ideas.
—— if O<asxsb<w, A well-known result(see Ref[11]) is that the logistic and
pr(x)={ XIn(b/a) (3)  tent maps are related according#tp=ger_cg~*, where
0 else.

X

If b/a=10’, wherej is a natural number, we say the Benford g(X)=J p (N dA=2sin Y(Vx)/7 for 0<x<1 (§)
ratio is satisfied. 0

Theorem 2A dynamical system satisfies Benford's law if . ) i
its invariant ergodic probability density function is the recip- 'S thé homeomorphism connecting the two maps. We now
rocal density and the Benford ratio is satisfied. use the homeomorphism

Proof. If the elements in the random vectorare distrib- y . b
uted according _to f[he densn_gR, then the elements iy h(x)=(f pRO\)d?\> —al—-
=log;o(X) are distributed uniformly orflog;pa, loggb]. a
The elements ofy are distributed uniformly orflogea, |
+log,pa] because of the conditiob/a=10’. Since the el- to modify the tent map so that it satisfies Benford’s law. The
ements ofy are distributed uniformly on an interval where transformation
the upper and lower limits differ by an integer, the fractional
part of the elements of must be distributed uniformly on mg(X)=horoh ™t
the interval[ 0,1], soApr=1.

X

for O=sx=<1 (9

See Ref.[10] for more densities that satisfy Benford’s b 2HnCdayin(ra)l e b\ ¥
law. a a if asx=a|—=-| ,
= b\ 2~ 2[In(x/a)/In(b/a)] b\ 12
V. THE TENT AND LOGISTIC MAPS a a if a 2 =x<b

The transformation that produces the tent map is (10)

2x if 0=x<1/2,

see Fig. 1 defines a dynamical system ¢a,b] where 0
2-2x if 12<x=<l. @ ig. 1 def ynamical system ¢a,b] w

<a<h<w. The invariant density of this dynamical system is
The tent map is the dynamical system defined by

Tr(X) =

([0,1], 71,pr=1). For 0<x=1 we calculate d fhfl(x) _ ;
axJo pr(A)dA —xln(b/a) if asx<b, (11
A —i In(10 10x_k__|n(10)10X¢1 5
Pr= < n(10) 9 ’ ©®  whichis just the reciprocal density. We know from Theorem

2 that the dynamical system defined hga,b], 75 ,pr) Satis-
which implies that the tent map does not satisfy Benford'sfies Benford's law whera and b satisfy the Benford ratio.
law. The logistic map is the dynamical system defined byThe following conjugacy diagram illustrates the process of
(0,1], 7 =4x(1—-x), p.=U(7y(1—x)x)). For 0<x  converting the logistic map into a system that satisfies Ben-
=<1 we calculate ford’s law (see Ref[10] for more details and examples
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a(b/a) « " [(a"+b")/2]
FIG. 1. Plot of rg. FIG. 2. Plot of 7, for k=2.
Logistic map [0,1]:[0,1] defined by(I=[—1,1], 7,, p,). Here we derive a dynamical
gl g system((a,b], 7., pr), wherepg is the reciprocal density,
Tent r that is topologically conjugate @, 7,, p,). The homeomor-
ent map [0,1]—[0,1] phism we will use to establish the conjugacy between the
hl  |h two systems isp(x) = ax*+ 8, where 0< k< and « and
Benford SyStem[a,b]E[a,b] B are chosen so thak([a,b])=I. The system oha,b] will

have invariant densitpy if we set
Sinceg and h are homeomorphisms there is a one-to-one
correspondence between the dynamics of the logistic map
and the map given ifil0). The method we used to transform
the logistic map is easily generalized. In REI0] we have d
p':d_xf

-1
applied it to systems from Reff6,12,13. v

pr(M)dN if  —1sx=<1l. (12

a
VII. CONSTRUCTING DYNAMICAL SYSTEMS
Methods from Ref[6], Chap. 12 allow us to choose an After finding 7, we setr,=¢ 'er°¢ (see Fig. 2 With
invariant densityp, and then construct dynamical systemssome manipulatiotisee Ref[10] for full details) we find

bx(a“+b“—x*) "< if 0<asx=<([a"+b*]/2),

TK(X): b(aK+ bK_XK)l/K/X if ([aK+ bK]/Z)l/K$X$ b<oo,

13

It is easily shown thaP, (pr) =pr. When the Benford defined or§ where each pseudorandom number corresponds
ratio is satisfied, the dynamical systdfm,b], . ,pg) satis- 0 the initial condition of one orbit. Then we iteraig.
fies Benford’s law. = 7(X,). The vectorx, is completely determined byandx,,
but for largen the density ofx, is invariant and independent
of the density ofx,. In the test simulations we use“0LC,
VIIl. NUMERICAL SIMULATIONS and 16 orbits and examine the orbits after 100 applications
of 7. Empirical evidence shows that by iteration 100, the
The invariant densities of most dynamical systems arelensity ofx, is nearly independent of the density xf
unknown. When a dynamical system’s invariant density is We test the null hypothesig{,, that the first significant
unknown, we cannot use Definition 2 to prove that it satisfiesligits of the orbits of a dynamical system satisfy the predic-
(or nearly satisfigsBenford’s law. Another approach to mea- tions of Benford’s law. From each simulation, under the as-
sure how close a dynamical system is to satisfying Benford'sumptions of the null hypothesis, a test statistic with a chi-
law is simulation. square distribution and 8 degrees of freedom may be
In what follows we use a two step process to simulateconstructed by comparing the simulation frequencies of the
dynamical systems. First we generatg a vector of initial  first significant digits with the frequencies predicted by Ben-
conditions by using pseudorandom numbers from a densitford’s law (see Ref[10]). We runm simulations(wherem
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=500) to obtainm independent identically distributed obser- TABLE |. Reciprocal systen{(1.b],7,,pg).
vations. From these observations we use a Kolmogorov=

Smirnov (KS) goodness of fit test to determine whether Web Orbits  m Con p value Benford o

accept or reject,, (see Ref[10]). A goodness of fit testisa 10 1 1000 0.8879 0.15p yes  accept
hypothesis test that allows us to compare our empirical disig 16 500 1.0304 0.15p yes  accept
tribution function with the chi-square distribution. The KS 101 16 500 22778  p<0.01 no reject

statistic,D,, is the largest vertical distance between the two15 91 16 500 1.3980 0.025p<0.05 no reject
distribution functions. Obviously a large value bf,, indi-
cates a difference between the empirical and chi-square dis-

tributions. The form of our hypothesis test is to rejétg at  strongly favor the acceptance #f,. These simulations give

a significance levek if Dp>dpy1-,, Wheredy; ., IS @  us a good idea of how small we can expect the test statistic,
constant depending on the desired significance level and thg,,, to be when Benford’s law is satisfied.

number of observations. A good approximation to this test |5 the simulations of [(1,10.1],7.,pr) and
(see Ref[14], Chap. 6 or Ref{10] for a table ofp valuesis  ([1,10.01,,,pr) H, Was rejected. These results indicate
to rejectH, if the test statisticC,, is greater than a constant, that our simulations method is extremely effective at detect-
C1- o, WhereCp=(ym+0.12+0.11A/m)D,. This alterna-  ing small deviations from Benford’s law.

tive test requires only one table of critical values, where the

original KS test requires a different table of critical values C. Simulation of Renyi’'s example

for each value om.

Renyi’'s example is a dynamical system given by
([Ovoo)!TH !pH) where
A. Interpretation of the simulation results

X
A type | error is made ifH, is rejected whert, is true. 1T« if 0<x<l1,

The probability of a type | error i, which is the level of TH(X)= (14)

the test. A type Il error is made i, is accepted when the x—1 if if 1=x.

alternative hypothesis is true. The probability of a type I , .

error increases whem decreases. Thevalue is the smallest 1he value ofpy, is unknown, so we can learn something new

level of significance for which the observed data indicate théPout the digital frequencies of Renyi's example with a

null hypothesis should be rejected. The smaller healue ~ Simulation study. Our simulation resulf$able I) give very

is, the more compelling the evidence is that the null hypoth-Strong evidence thgt the first significant digits of the orbits

esis should be rejected. generate_d Iby Renyi's example very nearly or exactly match
If Ho is rejected, this implies that with high probability the predictions of Benford's law. R

the simulated dynamical system does not satisfy Benford's Notice that for the Renyi's example simulation with°10

law. Simulation can show that a dynamical system does no‘?_rb'ts! t'heCm statl_stlc is less than the'statlstlc generated by

satisfy Benford's law since showing thét) does not hold simulating dynamical systems that satisfy Benford's (@ee

for even one value of, shows that Benford's law is not results for (a,b], 7., pg)). . o
satisfied. We have not shown that Renyi’'s example satisfies Ben-

If M, is accepted, this only implies that the first signifi- ford’s law. What we have shown is that that the first signifi-

cant digits of the simulated dynamical system closely matctf@nt digits of the orbits generated by R’enyl’s example are
the frequencies predicted by Benford's law. Benford's lawVery close to the predictions of Benford's law; the simula-
applies to all significant digits, so simulation is not a practi-ilons of Renyi's example generated data that was closer to
cal tool for showing that a dynamical system satisfies Benthe predlcnorjs of Benford’s law than dynamical systems that
ford's law in the sense of Definition 2. However, simulation W& know satisfy Benford's law.

can show that the first few significant digits of a dynamical

system are very close to the predictions of Benford’s law. D. Dynamics on[0,1]
In Sec. VII we constructed the dynamical systgrma,b],
B. Simulation of the reciprocal system 7., Pr) Where O0<a<b<w and O< k<. If we consider

We know that the reciprocal system, the dynamical systhis dynamical system of0,1] an obvious problem is that
tem defined by[(@,b],7.,pg), satisfies Benford's law when Pr iS not defined whera=0. Because of this, we write
a andb satisfy the Benford ratio. Our simulation results for ([0:1], 7, py) wherepy is an unknown density.
([a,b],7,,pRr), Wherexk=1, are summarized in Table(the
“Benford” column indicates if the dynamical system being
simulated satisfies Benford's l[awOur test statistic i<, ;

TABLE Il. Renyi's example.

larger values ofC,, correspond to an increased probability Orbits m G p value Tto

that the dynamical system under test does not satisfy Ben-1¢* 1000 0.9881 0.15p accept

ford’s law (see Ref[10] for full details). 10° 1000 1.0890 0.15p accept
We know that [1,10],7,,pRr) satisfies Benford's law, so  1¢f 500 0.62303 0.15p accept

it's no surprise that our two simulations of this system

026222-4



STOCHASTIC ASPECTS OF ONE-DIMENSIONA. . . PHYSICAL REVIEW E 64 026222

Sincepy is unknown we use a first digit numerical simu- analytical approach from Sec. V may be used to determine
lation using 16 orbits to test [0,1], ., py) satisfies Ben- with certainty if a model has the correct significant digit
ford’s law. Our simulation producedmvalue very near 0, so distribution, or when analytical results are impossible to ob-
the probability that [0,1], 7., py) does not satisfy Ben- tain, the method from Sec. IX, may be used to build numeri-

ford’s law is very close to 1. cal evidence that a mathematical model produces the appro-
priate distribution of significant digits.
IX. CONCLUSION A survey of the Benford’s law literaturdsee Refs.

) ) ) N - [1-4,8,9) reveals a surprising prevalence of physical data
This arugle provides a positive answer to the questiongets and common sequendeg., the Fibonacci sequence or
‘Do dynamical systems satisfy Benford's law?” Because of 11 21 31, .. .) that satisfy Benford’s law. Because of the
the many physical data sets that satisfy Benford’s law we,pjquity of Benford data, we believe that the development of

believe that the methods we have developed for determininghe mathematics associated with Benford's law is important.
how closely a dynamical system satisfies Benford's law may

have important applications in validating mathematical mod- ACKNOWLEDGMENT
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