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Stochastic aspects of one-dimensional discrete dynamical systems: Benford’s law
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Benford’s law owes its discovery to the ‘‘Grubby Pages Hypothesis,’’ a 19th century observation made by
Simon Newcomb that the beginning pages of logarithm books were grubbier than the last few pages, implying
that scientists referenced the values toward the front of the books more frequently. If a data set satisfies
Benford’s law, then it’s significant digits will have a logarithmic distribution, which favors smaller significant
digits. In this article we demonstrate two ways of creating discrete one-dimensional dynamical systems that
satisfy Benford’s law. We also develop a numerical simulation methodology that we use to study dynamical
systems when analytical results are not readily available.
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I. INTRODUCTION

The ‘‘Grubby Pages Hypothesis’’@1# led to the conjecture
that the significant digits of many data sets describing
physical world are not uniformly distributed, but distribute
in a way that favors smaller significant digits and smal
combinations of significant digits~e.g., the first significant
digit will be 4 more frequently than 5 and the first two si
nificant digits will be 89 more often than they will be 91
Benford’s law makes this conjecture more precise by prov
ing a probability mass function for combinations of signi
cant digits. While the law may seem obscure, many auth
have connected Benford’s law to data sets like stock pr
@2#, tax data@3#, and census statistics@4#. Since some ac-
counting data seems to satisfy Benford’s law, it is now be
used to detect accounting fraud@3#. Recently an empirica
study suggested that some dynamical systems satisfy
ford’s law @5#. This is important, because if dynamical sy
tems are used to model physical systems, and the phy
data satisfy Benford’s law, then the dynamical system m
els should too.

This article focuses on the long run behavior and dig
frequencies of discrete one-dimensional dynamical syst
~see Ref.@5# for the continuous case! and how well such
systems satisfy Benford’s law. We use notation and to
similar to those developed in Refs.@6# and@7#. We start with
a spaceS and a transformationt wheret describes the dy-
namics of the system andt: S→S. Given an initial vector
of points,x0, distributed inS according to some probability
density functionf, the vector of points given byx15t(x0)
has a probability density function that depends on botht and
f. Successive iterates are given byxn¿15t(xn). We develop
methods to determine if a dynamical system satisfies B
ford’s law, we introduce a method to modify dynamical sy
tems such as the logistic map so that they satisfy Benfo
law, and we show how to construct new dynamical syste
that satisfy Benford’s law.

II. BENFORD’S LAW

In order to define Benford’s law, we first define the fun
tions di , which extract the firsti significant digits from a
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random variable. Given a random variableX, di(X) is a
discrete random variable. We denote the probability thaX
equalsk as P@X5k#. A random variableX satisfies Ben-
ford’s law if for i 51,2,3, . . . ,

P@di~X!5k#5 log10~111/k!

for k510i 21,10i 2111, . . . ,10i21. ~1!

Using a random variable to introduce Benford’s law
appropriate here because random variables and dynam
systems can both be easily associated with densities.
definition of Benford’s law is equivalent to other definition
in the literature~see Ref.@8#!.

Definition 1. If the entries in a random vectorx are dis-
tributed according to the density p, then we denote the pr
ability density function for the random vector$ log10(uxu)% by
Dp, where$ log10(uxu)% is the fractional part oflog10(uxu).

Theorem 1. A random vectorx, distributed according to
some density p, satisfies Benford’s law if and only ifDp51.

Proof. See@9#, Theorem 1. j

III. INVARIANT DENSITY FUNCTIONS

We represent dynamical systems by (S, p, t), whereS is
the interval the dynamical system is defined on,p is the
invariant density, andt is the function that defines the dy
namics of the system. Implicit in this representation is thap
is the only invariant probability density associated witht.
Every dynamical system mentioned in this article has exa
one associated invariant density. In general, ift is smooth,
locally invertible, aperiodic, piecewise expanding, and sa
fies the Markov property, then it has one invariant measu
so consequently it has a single invariant density~Ref. @6#,
Theorem 6.1.1!. If one of the proceeding conditions is no
satisfied, one can still show the existence of an invari
density function fort by using results from Ref.@6#, Chap. 5.
Also, using Ref.@6#, Theorem 8.2.1 an upper bound can
placed on the number of distinct invariant density functio
for t.

The Frobenius-Perron operator is defined as

Pt f 5
d

dxEt21(2`,x]
f ~l!dl. ~2!
©2001 The American Physical Society22-1
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The probability density functions generated by su
cessive applications oft are denoted byf , Pt f , Pt

2 f ,
Pt

3 f , . . . ,Pt
n f , . . . wherePt

n f denotes thenth application
of the Frobenius–Perron operator. This notation reinfor
the fact that each new probability density function depe
on botht and f.

The dynamical systems mentioned in this paper all h
one invariant density, soPt

n f will converge to a single
unique invariant probability density function, denoted byp,
which is independent of the initial densityf.

IV. BENFORD DYNAMICAL SYSTEMS

Definition 2. A dynamical system(S,t,p) satisfies Ben-
ford’s law if Dp51.

We propose Definition 2 because the iterates of (S,t,p),
given by xn115t(xn), will converge to the distribution
specified byp, which satisfies Benford’s law if and only i
Dp51.

The reciprocal density is

pR~x!5H 1

x ln~b/a!
if 0 ,a<x<b,`,

0 else.

~3!

If b/a510 j , wherej is a natural number, we say the Benfo
ratio is satisfied.

Theorem 2. A dynamical system satisfies Benford’s law
its invariant ergodic probability density function is the reci
rocal density and the Benford ratio is satisfied.

Proof. If the elements in the random vectorx are distrib-
uted according to the densitypR , then the elements iny
5 log10(x) are distributed uniformly on@ log10a, log10b].
The elements ofy are distributed uniformly on@ log10a, j
1 log10a] because of the conditionb/a510 j . Since the el-
ements ofy are distributed uniformly on an interval wher
the upper and lower limits differ by an integer, the fraction
part of the elements ofy must be distributed uniformly on
the interval@0,1#, soDpR51. j

See Ref.@10# for more densities that satisfy Benford
law.

V. THE TENT AND LOGISTIC MAPS

The transformation that produces the tent map is

tT~x!5H 2x if 0<x<1/2,

222x if 1/2,x<1.
~4!

The tent map is the dynamical system defined
„@0,1#,tT ,pT51…. For 0<x<1 we calculate

DpT5 (
k51

`

ln~10!10x2k5
ln~10!10x

9
5” 1, ~5!

which implies that the tent map does not satisfy Benfor
law. The logistic map is the dynamical system defined
„@0,1#, tL54x(12x), pL51/(pA(12x)x)…. For 0<x
<1 we calculate
02622
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k51

`
ln~10!A10x2k

pA1210x2k
5” 1, ~6!

so the logistic map does not satisfy Benford’s law either.

VI. MODIFYING THE LOGISTIC MAP

Here we use homeomorphisms to alter the iterates of
logistic map so that they satisfy Benford’s law.

Definition 3. Let „S,t,p… and „S* ,t* ,p* … be dynamical
systems. The two dynamical systems are topologically co
gate if there exists a homeomorphisms h such that*
5h(S), t5h21+t* +h, and

p* ~x!5
d

dxE2`

h21(x)
p~l!dl. ~7!

Topologically conjugation preserves both measure theor
and topological properties oft. See@6#, Sec. 3.6 for a con-
cise treatment of the above ideas.

A well-known result~see Ref.@11#! is that the logistic and
tent maps are related according totT5g+tL+g21, where

g~x!5E
0

x

pL~l!dl52 sin21~Ax!/p for 0<x<1 ~8!

is the homeomorphism connecting the two maps. We n
use the homeomorphism

h~x!5S E
a

x

pR~l!dl D 21

5aS b

aD x

for 0<x<1 ~9!

to modify the tent map so that it satisfies Benford’s law. T
transformation

tB~x!5h+tT+h21

5H aS b

aD 2@ ln(x/a)/ ln(b/a)#

if a<x<aS b

aD 1/2

,

aS b

aD 222@ ln(x/a)/ ln(b/a)#

if aS b

aD 1/2

<x<b

~10!

~see Fig. 1! defines a dynamical system on@a,b# where 0
,a,b,`. The invariant density of this dynamical system

d

dxE0

h21(x)
pT~l!dl5

1

x ln~b/a!
if a<x<b, ~11!

which is just the reciprocal density. We know from Theore
2 that the dynamical system defined by„@a,b#,tB ,pR… satis-
fies Benford’s law whena and b satisfy the Benford ratio.
The following conjugacy diagram illustrates the process
converting the logistic map into a system that satisfies B
ford’s law ~see Ref.@10# for more details and examples!.
2-2
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Logistic map @0,1#→
t L

@0,1#

g↓ ↓g

Tent map @0,1#→
t T

@0,1#

h↓ ↓h

Benford system@a,b#→
t B

@a,b#

Since g and h are homeomorphisms there is a one-to-o
correspondence between the dynamics of the logistic m
and the map given in~10!. The method we used to transfor
the logistic map is easily generalized. In Ref.@10# we have
applied it to systems from Refs.@6,12,13#.

VII. CONSTRUCTING DYNAMICAL SYSTEMS

Methods from Ref.@6#, Chap. 12 allow us to choose a
invariant densitypI and then construct dynamical system

FIG. 1. Plot oftB .
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defined by„I 5@21,1#, t I , pI…. Here we derive a dynamica
system„@a,b#, tk , pR…, wherepR is the reciprocal density
that is topologically conjugate to„I , t I , pI…. The homeomor-
phism we will use to establish the conjugacy between
two systems isf(x)5axk1b, where 0,k,` and a and
b are chosen so thatf(@a,b#)5I . The system on@a,b# will
have invariant densitypR if we set

pI5
d

dxEa

f21(x)
pR~l!dl if 21<x<1. ~12!

After finding t I , we settk5f21+t I+f ~see Fig. 2!. With
some manipulation~see Ref.@10# for full details! we find

FIG. 2. Plot oftk for k52.
tk~x!5H bx~ak1bk2xk!21/k if 0 ,a<x<~@ak1bk#/2!1/k,

b~ak1bk2xk!1/k/x if ~@ak1bk#/2!1/k<x<b,`.
~13!
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It is easily shown thatPtk
(pR)5pR . When the Benford

ratio is satisfied, the dynamical system„@a,b#,tk ,pR… satis-
fies Benford’s law.

VIII. NUMERICAL SIMULATIONS

The invariant densities of most dynamical systems
unknown. When a dynamical system’s invariant density
unknown, we cannot use Definition 2 to prove that it satisfi
~or nearly satisfies! Benford’s law. Another approach to mea
sure how close a dynamical system is to satisfying Benfo
law is simulation.

In what follows we use a two step process to simul
dynamical systems. First we generatex0, a vector of initial
conditions by using pseudorandom numbers from a den
e
s
s

’s

e

ty

defined onS, where each pseudorandom number correspo
to the initial condition of one orbit. Then we iteratexn11
5t(xn). The vectorxn is completely determined byt andx0,
but for largen the density ofxn is invariant and independen
of the density ofx0. In the test simulations we use 104, 105,
and 106 orbits and examine the orbits after 100 applicatio
of t. Empirical evidence shows that by iteration 100, t
density ofxn is nearly independent of the density ofx0.

We test the null hypothesis,H0 , that the first significant
digits of the orbits of a dynamical system satisfy the pred
tions of Benford’s law. From each simulation, under the
sumptions of the null hypothesis, a test statistic with a c
square distribution and 8 degrees of freedom may
constructed by comparing the simulation frequencies of
first significant digits with the frequencies predicted by Be
ford’s law ~see Ref.@10#!. We runm simulations~wherem
2-3
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>500! to obtainm independent identically distributed obse
vations. From these observations we use a Kolmogor
Smirnov ~KS! goodness of fit test to determine whether w
accept or rejectH0 ~see Ref.@10#!. A goodness of fit test is a
hypothesis test that allows us to compare our empirical
tribution function with the chi-square distribution. The K
statistic,Dm , is the largest vertical distance between the t
distribution functions. Obviously a large value ofDm indi-
cates a difference between the empirical and chi-square
tributions. The form of our hypothesis test is to rejectH0 at
a significance levela if Dm.dm,12a , where dm,12a is a
constant depending on the desired significance level and
number of observations. A good approximation to this t
~see Ref.@14#, Chap. 6 or Ref.@10# for a table ofp values! is
to rejectH0 if the test statisticCm is greater than a constan
c12a , whereCm5(Am10.1210.11/Am)Dm . This alterna-
tive test requires only one table of critical values, where
original KS test requires a different table of critical valu
for each value ofm.

A. Interpretation of the simulation results

A type I error is made ifH0 is rejected whenH0 is true.
The probability of a type I error isa, which is the level of
the test. A type II error is made ifH0 is accepted when the
alternative hypothesis is true. The probability of a type
error increases whena decreases. Thep value is the smalles
level of significance for which the observed data indicate
null hypothesis should be rejected. The smaller thep value
is, the more compelling the evidence is that the null hypo
esis should be rejected.

If H0 is rejected, this implies that with high probabilit
the simulated dynamical system does not satisfy Benfo
law. Simulation can show that a dynamical system does
satisfy Benford’s law since showing that~1! does not hold
for even one value ofi, shows that Benford’s law is no
satisfied.

If H0 is accepted, this only implies that the first signi
cant digits of the simulated dynamical system closely ma
the frequencies predicted by Benford’s law. Benford’s la
applies to all significant digits, so simulation is not a prac
cal tool for showing that a dynamical system satisfies B
ford’s law in the sense of Definition 2. However, simulatio
can show that the first few significant digits of a dynamic
system are very close to the predictions of Benford’s law

B. Simulation of the reciprocal system

We know that the reciprocal system, the dynamical s
tem defined by (@a,b#,tk ,pR), satisfies Benford’s law when
a andb satisfy the Benford ratio. Our simulation results f
(@a,b#,tk ,pR), wherek51, are summarized in Table I~the
‘‘Benford’’ column indicates if the dynamical system bein
simulated satisfies Benford’s law!. Our test statistic isCm ;
larger values ofCm correspond to an increased probabil
that the dynamical system under test does not satisfy B
ford’s law ~see Ref.@10# for full details!.

We know that (@1,10#,tk ,pR) satisfies Benford’s law, so
it’s no surprise that our two simulations of this syste
02622
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strongly favor the acceptance ofH0. These simulations give
us a good idea of how small we can expect the test stati
Cm , to be when Benford’s law is satisfied.

In the simulations of (@1,10.1#,tk ,pR) and
(@1,10.01#,tk ,pR) H0 was rejected. These results indica
that our simulations method is extremely effective at dete
ing small deviations from Benford’s law.

C. Simulation of Renyi’s example

Renyi’s example is a dynamical system given
(@0,̀ ),tH ,pH) where

tH~x!5H x

12x
if 0 ,x,1,

x21 if if 1<x.

~14!

The value ofpH is unknown, so we can learn something ne
about the digital frequencies of Renyi’s example with
simulation study. Our simulation results~Table II! give very
strong evidence that the first significant digits of the orb
generated by Renyi’s example very nearly or exactly ma
the predictions of Benford’s law.

Notice that for the Renyi’s example simulation with 106

orbits, theCm statistic is less than the statistic generated
simulating dynamical systems that satisfy Benford’s law„see
results for (@a,b#,tk ,pR)….

We have not shown that Renyi’s example satisfies B
ford’s law. What we have shown is that that the first sign
cant digits of the orbits generated by Renyi’s example
very close to the predictions of Benford’s law; the simu
tions of Renyi’s example generated data that was close
the predictions of Benford’s law than dynamical systems t
we know satisfy Benford’s law.

D. Dynamics on†0,1‡

In Sec. VII we constructed the dynamical system (@a,b#,
tk , pR) where 0,a,b,` and 0,k,`. If we consider
this dynamical system on@0,1# an obvious problem is tha
pR is not defined whena50. Because of this, we write
(@0,1#, tk , pU) wherepU is an unknown density.

TABLE I. Reciprocal system„@1,b#,tk ,pR….

b Orbits m Cm p value Benford H0

10 105 1000 0.8879 0.15,p yes accept
10 106 500 1.0304 0.15,p yes accept
10.1 106 500 2.2778 p!0.01 no reject
10.01 106 500 1.3980 0.025,p,0.05 no reject

TABLE II. Renyi’s example.

Orbits m Cm p value H0

104 1000 0.9881 0.15,p accept
105 1000 1.0890 0.15,p accept
106 500 0.62303 0.15,p accept
2-4
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SincepU is unknown we use a first digit numerical sim
lation using 106 orbits to test (@0,1#, tk , pU) satisfies Ben-
ford’s law. Our simulation produced ap value very near 0, so
the probability that (@0,1#, tk , pU) does not satisfy Ben
ford’s law is very close to 1.

IX. CONCLUSION

This article provides a positive answer to the questi
‘‘Do dynamical systems satisfy Benford’s law?’’ Because
the many physical data sets that satisfy Benford’s law
believe that the methods we have developed for determin
how closely a dynamical system satisfies Benford’s law m
have important applications in validating mathematical m
els. If the observed data generated by a physical pro
satisfy Benford’s law, then results generated by a mode
that physical process should also satisfy Benford’s law. T
s

02622
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analytical approach from Sec. V may be used to determ
with certainty if a model has the correct significant dig
distribution, or when analytical results are impossible to o
tain, the method from Sec. IX, may be used to build nume
cal evidence that a mathematical model produces the ap
priate distribution of significant digits.

A survey of the Benford’s law literature~see Refs.
@1–4,8,9#! reveals a surprising prevalence of physical d
sets and common sequences~e.g., the Fibonacci sequence
1!,2!,3!, . . . ) that satisfy Benford’s law. Because of th
ubiquity of Benford data, we believe that the development
the mathematics associated with Benford’s law is importa
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